

## N,N'-DIMETHYLPROPYLENEUREA 1,2-DIMETHYL-2-IMIDAZOLIDINONE N,N,N',N'-TETRAETHYLSULFAMIDE

### **New Dipolar Aprotic Solvents**

FLUKA offers the three new dipolar aprotic solvents 41664 1,3-Dimethyltetrahydro-2(1H)-pyrimidinone (N,N'-Dimethyl-propyleneurea) DMPU, 40727 1,3-Dimethyl-2-imidazolidinone (N,N'-Dimethylethyleneurea) DMEU or DMI, and 86718 N,N,N',N'-Tetraethylsulfamide, TES. These novel solvents for organometallic reactions have been shown in several cases to be favorable substitutes for the carcinogenic HMPA.

DMPU and DMEU are new N-alkylated ureas with high dipole moments and dielectric constants". **DMPU** recently was shown by Seebach et al.<sup>2)</sup> to be an excellent replacement of HMPA as cosolvent in oxirane opening with lithium acetylide, in a Wittig olefination, in the double deprotonation of nitroalkanes, in the Michael addition of lithium dithianide to 2-cyclohexenone, and in the selective generation of certain enolates. Some of the attractive properties of DMPU are: a 33% solution in THF is stable to LDA up to at least -35°, DPMU solidifies below -20° and a 50% solution in THF remains clear and homogenous down to at least -78°<sup>2)</sup>.

**DMEU (DMI)** was used as solvent for the preparation of trimethylsilyl sodium, one of the strongest bases known<sup>3)</sup>, and was shown to be more stable than HMPA in the reaction of trimethylchlorosilane with lithium<sup>4)</sup>. DMEU was found by T. Mukaiyama et al.<sup>5)</sup> to be the solvent of choice for the transformation of allylic iodides into homoallylic alcohols. It may also be used as solvent for dehydrations and dehydrohalogenations with methyltriphenoxyphosphonium iodide<sup>6)</sup>.

**N,N,N',N'-Tetraethylsulfamide, TES,** recently was proposed by H. Richey et al.<sup>3</sup> as advantageous solvent for Grignard reagents. TES shows a greater stability towards these strongly basic and nucleophilic reagents than HMPA. Even organolithium compounds have a limited stability at ambient temperatur in TES<sup>3</sup>.

| 41664 | 1,3-Dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone, DMPU purum >99%(GC); B.P. <sub>280</sub> /230°; d <sup>2</sup> / <sub>2</sub> 1.0596 (N,N'-Dimethylpropyleneurea; 1,3-Dimethyl-2-oxo-hexahydropyrimidine) CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> N(CH <sub>3</sub> )CONCH <sub>3</sub> C <sub>8</sub> H <sub>12</sub> N <sub>2</sub> O M <sub>r</sub> 126.17 [7226-23-5] | 50 ml sFr. 20.—<br>250 ml sFr. 85.—   | us\$ 13.30<br>us\$ 56.70 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|
| 40727 | 1,3-Dimethyl-2-imidazolidinone, DMEU, DMI purum 99%(GC); 1 lt ≈ 1.06 kg B.P. 221-223° (N,N'-Dimethylethyleneurea) CH₂CH₂N(CH₃)CONCH₃ C₂H₁₀N₂O M₂ 114.10 [80-73-9]                                                                                                                                                                                                                                     | 25 ml sFr. 18.—<br>100 ml sFr. 65.—   |                          |
| 86718 | N,N,N',N'-Tetraethylsulfamide, TES purum >99%(GC); B.P. <sub>0.02</sub> 70°; $d_1^{3g}$ 1.0441 lt $\approx$ 1.04 kg {C <sub>2</sub> H <sub>3</sub> } <sub>3</sub> NSO <sub>2</sub> N(C <sub>2</sub> H <sub>3</sub> ) <sub>2</sub> C <sub>3</sub> H <sub>30</sub> N <sub>2</sub> O <sub>2</sub> S M <sub>1</sub> 208.32 [2832-49-7]                                                                    | 100 ml sFr. 25.—<br>500 ml sFr. 105.— |                          |

#### References.

- <sup>11</sup> B.J. Barker et al., Angew. Chem. 91, 560; Int. Ed. Engl. 18, 503 (1979)
- <sup>21</sup> T. Mukhopadhyay, D. Seebach, Helv. Chim. Acta 65, 385 (1982)
- 3) H. Sakurai, F. Kondo, J. Organomet. Chem. 92, C46 (1975)
- 4) H. Sakurai, F. Kondo, ibid. 117, 149 (1976)

- 5) T. Mukaiyama et al., Chem. Lett. 1507 (1980)
- 5) C.W. Spangler et al., J. Chem. Soc. Perkin I 2287 (1981)
- 71 H. G. Richey et al., J. Org. Chem. 46, 2823 (1981)

Besides the three new solvents shown above FLUKA offers a large number of other aprotic dipolar compounds useful as solvents or cosolvents. For specifications and prices see the Catalogue 13, 1982/83.

29545 1-Cyclohexylpyrrolidone 04810 1-Ethylpyrrolidone 69118 1-Methylpyrrolidone 34700 N,N-Dibutylformamide 47721 4-Formylmorpholine 86148 Sulfolane 32330 N,N-Diethylformamide 47725 1-Formylpiperidine 86892 Tetrabutylurea 38401 N,N-Dilsopropylformamide 47728 1-Formylpyrrolidine 86705 Tetraethylurea 38840 N,N-Dimethylacetamide 52730 Hexamethylphosphoramide, HMPA 87850 Tetramethylurea 40250 N,N-Dimethylformamide 66179 N-Methylcaprolactame 93230 Tripiperidinophosphine oxide 41640 Dimethyl sulfoxide, DMSO 93404 Tripyrrolidinophosphine oxide

Tridom Chemical Inc., 255 Oser Avenue, Hauppauge, New York 11787, Telephone (516) 273-0110, Telex 96-7807 Exclusive North American Representative of Fluka AG, Buchs (FLUKA-products are available from stock)

Concerning prices outside of North America and Switzerland, please contact our local agent; for Germany

Fluka Feinchemikalien GmbH, Lilienthalstrasse 8, D-7910 Neu-Ulm, Telephone (0731) 7 4088-89, Telex 712316

FLUKA AG, CH-9470 BUCHS, SWITZERLAND, TELEPHONE (085) 6 02 75, TELEX 855 282



# Trimethylphosphine-AgI Complex

### PMe, Now Available in Convenient Solid Form

Challenges posed by the synthesis, handling and storage of trimethylphosphine make the use of this versatile ligand something less than a joy. Aldrich now offers the trimethylphosphine-silver iodide complex, [Agl-PMe,], an extremely convenient alternative to neat PMe, Consider the advantages:

- · minimized hazards for shipping and handling
- optimum stability allowing extended storage in a screw-cap bottle at ambient temperatures (vs. ampule and inert gas)
- •extremely pure PMe, isolable from the complex simply by heating with a heat gun or an oil bath

Uses of trimethylphosphine span the spectrum of synthetic chemistry and extend to studies of catalytic processes. The X-ray structural analyses of novel adducts prepared from trans-[PtCl<sub>2</sub>(PMe<sub>2</sub>)NH<sub>3</sub>] and either 18-crown-6 or dibenzo-18-crown-6 have shown that the stability of the crystalline adducts is due in part to hydrogen bonding of the NH<sub>3</sub> ligand to pairs of oxygen atoms comprising the cavity of the crown ether.

A newly synthesized class of complexes containing tungsten-tungsten quadruple bonds (e.g., 1 and 2) features phosphine ligands such as PMe<sub>3</sub>; 'structural studies carried out on several of these derivatives confirm the multiple-bonding character and, in the case of 2, bridging chlorine atoms.



Variations of this scheme can produce either the novel methylidyne complex 3,3 or 1 by thermal dimerization:4

Treichel and Komar' recently cited the increasing use of PMe, as a ligand in organometallic chemistry in a report of the synthesis of novel cyclopentadienyliron-trimethylphosphine complexes. Similar compounds of cobalt [e.g., C,H,Co-(PMe,),] are precursors of several complexes featuring a disubstituted cyclopentadienyl ligand, a character which permits the study of the influence of steric effects on the Lewis basicity of electron-rich metals.'

Phosphines also stabilize nickel in a variety of oxidation states; this property can be exploited to further the understanding of mechanisms involving metal-carbon sigma bonds in organometallic chemistry, including catalytic systems. An example is the homolytic cleavage of the Ni-CH, bond in the synthesis of the 17e Ni(I) d monomeric tetrahedral complex, 4.\*.10

Cationic rhodium complexes containing PMe, and other phosphines have been applied to the catalytic hydrogenation of styrene oxide.<sup>11</sup>

### References:

18,665-1

15,839-9

- 1) Andersen, R.A. et al. J. Am. Chem. Soc. 1981, 103, 3953.
- 2) Colquhoun, H.M. et al. Chem. Commun. 1981, 847.
- 3) Sharp, P.R.; Schrock, R.R. J. Am. Chem. Soc. 1980, 102, 1430.
- 4) Cotton, F.A. et al. ibid. 1980, 102, 1431.
- 5) Sharp, P.R. et al. ibid. 1981, 103, 965.
- 6) Treichel, P.M.; Komar, D.A. J. Organomet. Chem. 1981, 206, 77.
- 7) Werner, H.; Hofmann, W. Chem. Ber. 1981, 114, 2681.
- 8) Bontempelli, G. et al. Inorg. Chem. 1981, 20, 2579.
- Gleizes, A. et al. J. Am. Chem. Soc. 1977, 99, 5187.
   Gleizes, A. et al. Inorg. Chem. 1981, 20, 2372.
- 11) Fujitsu, H. et al. J. Org. Chem. 1981, 46, 2287.

23,086-3 Trimethylphosphine-silver iodide complex

5g \$17.25; 25g \$69.00; 100g \$200.00

19,804-8 Trimethylaluminum, 2M in toluene

Dibenzo-18-crown-6

100ml \$8.80; 800ml \$32.75

T2,250-0 N, N, N', N'-Tetramethylethylenediamine

(TMEDA) 100g \$7.00; 500g \$24.75

18-Crown-6 5g \$7.00; 25g \$28.50

2.5g \$4.25

10g \$11.75; 50g \$38.25



chemists helping chemists in research & industry

## aldrich chemical co.

P.O. Box 355, Milwaukee, Wisconsin 53201 • (414) 273-3850

Great Britain: Aldrich Chemical Co., Ltd. The Old Brickyard, New Road Gillingham, Dorset SP8 4JL England Belgium/ Continental Europe: Aldrich-Europe B-2340 Beerse Belgium West Germany/ Continental Europe: EGA-Chemie KG 7924 Steinheim am Albuch West Germany

Japan: Aldrich Japan c/o Kyodo Bldg. Shinkanda 10 Kanda-Mikuracho Chiyoda-Ku, Tokyo, Japan Canada: Aldrich Chemical Co. (Canada), Ltd. 1411 Fort Street Suite 1403 Montreal, Quebec Canada H3H 2N7

Israel: Sigma Israel Chemical Co. P.O. Box 37673 Tel Aviv Israel 61360